Removing splitting/modeling error in projection/penalty methods for Navier-Stokes simulations with continuous data assimilation
Published in Communications in Mathematical Research, 2023
We study continuous data assimilation (CDA) applied to projection and penalty methods for the Navier-Stokes (NS) equations. Penalty and projection methods are more efficient than consistent NS discretizations, however are less accurate due to modeling error (penalty) and splitting error (projection). We show analytically and numerically that with measurement data and properly chosen parameters, CDA can effectively remove these splitting and modeling errors and provide long time optimally accurate solutions.
Recommended citation: E. Hawkins, L.G. Rebholz, D. Vargun. "Removing splitting/modeling error in projection/penalty methods for Navier-Stokes simulations with continuous data assimilation", Communications in Mathematical Research, 40(1):1–29, 2024. doi:10.4208/cmr.2023-0008
Download Paper
